Advertisements
Advertisements
प्रश्न
Find the value of m so that 2x – 1 be a factor of 8x4 + 4x3 – 16x2 + 10x + m.
उत्तर
Let p(x) = 8x4 + 4x3 – 16x2 + 10x + m
Since, 2x – 1 is a factor of p(x), then put `p(1/2) = 0`
∴ `8(1/2)^4 + 4(1/2)^3 - 16(1/2)^2 + 10(1/2) + m = 0`
⇒ `8 xx 1/16 + 4 xx 1/8 - 16 xx 1/4 + 10(1/2) + m = 0`
⇒ `1/2 + 1/2 - 4 + 5 + m = 0`
⇒ 1 + 1 + m = 0
∴ m = –2
Hence, the value of m is –2.
APPEARS IN
संबंधित प्रश्न
Factorise:
12x2 – 7x + 1
Factorise:
2x2 + 7x + 3
Factorize the following polynomial.
(x – 5)2 – (5x – 25) – 24
Factorize the following polynomial.
(x – 3) (x – 4)2 (x – 5) – 6
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is ______.
Which of the following is a factor of (x + y)3 – (x3 + y3)?
Factorise the following:
9x2 – 12x + 3
Factorise:
1 + 64x3
Factorise:
`a^3 - 2sqrt(2)b^3`
Without finding the cubes, factorise:
(x – 2y)3 + (2y – 3z)3 + (3z – x)3