Advertisements
Advertisements
प्रश्न
If x + 1 is a factor of ax3 + x2 – 2x + 4a – 9, find the value of a.
उत्तर
Let p(x) = ax3 + x2 – 2x + 4a – 9
Since, x + 1 is a factor of p(x), then put p(–1) = 0
∴ a(–1)3 + (–1)2 – 2(–1) + 4a – 9 = 0
⇒ –a + 1 + 2 + 4a – 9 = 0
⇒ 3a – 6 = 0
⇒ 3a = 6
⇒ `a = 6/3 = 2`
Hence, the value of a is 2.
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Factorise:
3x2 – x – 4
Find the factor of the polynomial given below.
`1/2x^2 - 3x + 4`
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
Factorize the following polynomial.
(x2 – 2x + 3) (x2 – 2x + 5) – 35
Factorize the following polynomial.
(x – 3) (x – 4)2 (x – 5) – 6
x + 1 is a factor of the polynomial ______.
Which of the following is a factor of (x + y)3 – (x3 + y3)?
Factorise:
84 – 2r – 2r2
Factorise the following:
1 – 64a3 – 12a + 48a2