Advertisements
Advertisements
प्रश्न
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
उत्तर
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
= (x2 – 6x)2 – 8(x2 – 6x) – 64 – 64
= (x2 – 6x)2 – 8(x2 – 6x) – 128
Let x2 – 6x = z.
∴ (x2 – 6x)2 – 8(x2 – 6x) – 128
= z2 – 8z – 128
= z2 – 16 z + 8z – 128
= z(z – 16) + 8 (z – 16)
= (z – 16) (z +8)
= (x2 – 6x – 16) (x2 – 6x + 8) ...(Replace z = x2 – 6x)
= (x2 – 8x + 2x – 16) (x2 – 4x – 2x + 8)
= [x (x – 8) + 2 (x – 8)] [x (x – 4) – 2 (x – 4)]
= (x – 8) (x + 2) (x – 4) (x – 2)
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Factorise:
12x2 – 7x + 1
Factorise:
x3 + 13x2 + 32x + 20
Find the factor of the polynomial given below.
`sqrt 3 x^2 + 4x + sqrt 3`
x + 1 is a factor of the polynomial ______.
Show that p – 1 is a factor of p10 – 1 and also of p11 – 1.
Factorise:
x2 + 9x + 18
Factorise:
6x2 + 7x – 3
Factorise the following:
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
Find the following product:
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)