Advertisements
Advertisements
प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
उत्तर
If g(x) = x − 3 is a factor of the given polynomial p(x), then p(3) must be 0.
p(x) = x3 − 4x2 + x + 6
p(3) = (3)3 − 4(3)2 + 3 + 6
= 27 − 4(9) + 3 + 6
= 27 − 36 + 3 + 6
= 0
Hence, g(x) = x − 3 is a factor of the given polynomial.
APPEARS IN
संबंधित प्रश्न
Determine the following polynomial has (x + 1) a factor:
x3 + x2 + x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = `kx^2 - sqrt2x +1`
Factorise:
2x2 + 7x + 3
Find the factor of the polynomial given below.
2m2 + 5m – 3
Which of the following is a factor of (x + y)3 – (x3 + y3)?
Determine which of the following polynomials has x – 2 a factor:
3x2 + 6x – 24
Find the value of m so that 2x – 1 be a factor of 8x4 + 4x3 – 16x2 + 10x + m.
Factorise the following:
1 – 64a3 – 12a + 48a2
Factorise the following:
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`