Advertisements
Advertisements
प्रश्न
y3 − 2y2 − 29y − 42
उत्तर
Let f(y) = y3 − 2y2 − 29y − 42 be the given polynomial.
Now, putting y = -2we get
`f(-2) = (-2)^ -2 (-2)^2 - 29 (-2) -42`
` = -8 -8 + 58 - 42 = -58 + 58`
` = 0`
Therefore, (y +2) is a factor of polynomial f(y).
Now,
`f(y) = y^2 (y+2) + 4y(y+2) -21(y+2)`
` = (y + 2){y^2 -4y - 21}`
` =y +2`{y^2 -7y + 3y - 21}
`=(y + 2)(y+3)(y - 7)`
Hence (y+2),(y+3) and (y - 7) are the factors of polynomial f(y).
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`f(x)=4x^3-x^2-3x+7`
Identify constant, linear, quadratic and cubic polynomials from the following polynomials
`p(x)=2x^2-x+4`
If `x = 2` is a root of the polynomial `f(x) = 2x2 – 3x + 7a` find the value of a.
y3 − 7y + 6
Mark the correct alternative in each of the following:
If x − 2 is a factor of x2 + 3ax − 2a, then a =
If x − a is a factor of x3 −3x2a + 2a2x + b, then the value of b is
If (x − 1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of
Factorise the following:
y2 – 16y – 80
Factorise the following:
6x2 + 16xy + 8y2
Factorise:
x3 + x2 – 4x – 4