Advertisements
Advertisements
प्रश्न
x3 − 10x2 − 53x − 42
उत्तर
Let `f(x) = x^3 - 10x^2 - 53x -42` be the given polynomial.
Now, putting x = -1 we get
`f(-1) = (-1)^3 - 10(-1)^2 - 53(-1) - 42`
` = -1-10 + 53 - 42`
` = -53 + 53 = 0`
Therefore, (x + 1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x+1) -11x(x+1) - 42(x+1)`
` = (x+1){x^2 -11x - 42}`
` = (x + 1){x^2 - 14x + 3x - 42}`
` = (x +1)(x+3)(x - 14)`
Hence (x+1),(x + 3) and (x - 14)are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Identify polynomials in the following:
`g(x)=2x^3-3x^2+sqrtx-1`
Identify polynomials in the following:
`q(x)=2x^2-3x+4/x+2`
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
If x − 2 is a factor of the following two polynomials, find the values of a in each case x5 − 3x4 − ax3 + 3ax2 + 2ax + 4.
In the following two polynomials, find the value of a, if x + a is a factor x3 + ax2 − 2x +a + 4.
x4 − 7x3 + 9x2 + 7x − 10
2y3 − 5y2 − 19y + 42
If x2 − 1 is a factor of ax4 + bx3 + cx2 + dx + e, then
(a + b – c)2 is equal to __________