Advertisements
Advertisements
प्रश्न
x3 − 10x2 − 53x − 42
उत्तर
Let `f(x) = x^3 - 10x^2 - 53x -42` be the given polynomial.
Now, putting x = -1 we get
`f(-1) = (-1)^3 - 10(-1)^2 - 53(-1) - 42`
` = -1-10 + 53 - 42`
` = -53 + 53 = 0`
Therefore, (x + 1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x+1) -11x(x+1) - 42(x+1)`
` = (x+1){x^2 -11x - 42}`
` = (x + 1){x^2 - 14x + 3x - 42}`
` = (x +1)(x+3)(x - 14)`
Hence (x+1),(x + 3) and (x - 14)are the factors of polynomial f(x).
APPEARS IN
संबंधित प्रश्न
Write the degrees of each of the following polynomials
`7x3 + 4x2 – 3x + 12`
f(x) = 4x3 − 12x2 + 14x − 3, g(x) 2x − 1
f(x) = 9x3 − 3x2 + x − 5, g(x) = \[x - \frac{2}{3}\]
f(x) = x5 + 3x4 − x3 − 3x2 + 5x + 15, g(x) = x + 3
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
In the following two polynomials, find the value of a, if x − a is factor (x5 − a2x3 + 2x + a + 1).
If both x + 1 and x − 1 are factors of ax3 + x2 − 2x + b, find the values of a and b.
If x + a is a factor of x4 − a2x2 + 3x − 6a, then a =
Factorise the following:
12x2 + 36x2y + 27y2x2
Factorise the following:
(a + b)2 + 9(a + b) + 18