हिंदी

If first term of an A.P. is a, second term is b and last term is c, then show that sum of all terms is (a+c)(b+c−2a)2(b−a). - Algebra

Advertisements
Advertisements

प्रश्न

If first term of an A.P. is a, second term is b and last term is c, then show that sum of all terms is  \[\frac{\left( a + c \right) \left( b + c - 2a \right)}{2\left( b - a \right)}\].

योग

उत्तर

a, b, ..., c

t1 = a, d = b - a, tn = c

We know that

tn = a + (n - 1)d

c = a + (n - 1)(b - a)

`(c-a)/(b-a)=n-1` 

`(c-a)/(b-a)+1/1=n`

`(c-a+b-a)/(b-a)=n`

∴ n = `(c+b-2a)/(b-a)`      ...(1)

Now, 

Sn = `n/2[t_1 + t_n]`

Sn = `(c+b-2a)/((b-a)2)[a+c]`

Sn = `((a+c)(b+c-2a))/(2(b-a))`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Arithmetic Progression - Problem Set 3 [पृष्ठ ८०]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
अध्याय 3 Arithmetic Progression
Problem Set 3 | Q 11 | पृष्ठ ८०

संबंधित प्रश्न

In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato and other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line.

A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?

[Hint: to pick up the first potato and the second potato, the total distance (in metres) run by a competitor is 2 × 5 + 2 ×(5 + 3)]


Find the sum of the first 25 terms of an A.P. whose nth term is given by an = 2 − 3n.


Find the middle term of the AP 10, 7, 4, ……., (-62).


In a flower bed, there are 43 rose plants in the first row, 41 in second, 39 in the third, and so on. There are 11 rose plants in the last row. How many rows are there in the flower bed?


Find the value of x for which (x + 2), 2x, ()2x + 3) are three consecutive terms of an AP.


Find the sum of first n even natural numbers.


If (2p +1), 13, (5p -3) are in AP, find the value of p.


If (2p – 1), 7, 3p are in AP, find the value of p.


Find the first term and common difference for  the A.P.

127, 135, 143, 151,...


Choose the correct alternative answer for  the following question . 

In an A.P. first two terms are –3, 4 then 21st term is ...


If m times the mth term of an A.P. is eqaul to n times nth term then show that the (m + n)th term of the A.P. is zero.


The sum of first 9 terms of an A.P. is 162. The ratio of its 6th term to its 13th term is 1 : 2. Find the first and 15th term of the A.P.


Write 5th term from the end of the A.P. 3, 5, 7, 9, ..., 201.

 

Write the value of x for which 2xx + 10 and 3x + 2 are in A.P.

 

Which term of the  AP  3, 15, 27, 39, ...... will be 120 more than its 21st term?


The sum of first six terms of an arithmetic progression is 42. The ratio of the 10th term to the 30th term is `(1)/(3)`. Calculate the first and the thirteenth term.


Find the sum of three-digit natural numbers, which are divisible by 4


The sum of first five multiples of 3 is ______.


Find the sum of those integers from 1 to 500 which are multiples of 2 as well as of 5.


Jaspal Singh repays his total loan of Rs. 118000 by paying every month starting with the first instalment of Rs. 1000. If he increases the instalment by Rs. 100 every month, what amount will be paid by him in the 30th instalment? What amount of loan does he still have to pay after the 30th instalment?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×