Advertisements
Advertisements
प्रश्न
If the function `f(x)=(4^sinx-1)^2/(xlog(1+2x))` for x ≠ 0 is continuous at x = 0, find f (0).
उत्तर
f is continuous at x = 0.
`f(0)=lim_(x->0)f(x)`
`f(0)=lim_(x->0)(4^sinx-1)^2/(xlog(1+2x))`
`=lim_(x->0)((4^sinx-1)^2/x^2)/((xlog(1+2x))/x^2)`
`=lim_(x->0)(((4^sinx-1)/sinx)^2.sin^2x/x^2)/((2log(1+2x))/(2x))`
`=(lim_(x->0)(4^sinx-1)/sinx xx.lim_(x->0)sinx/x)^2/(2((lim_(x->0)log(1+2x))/(2x)))`
`f(0)=(log4)^2/2`
shaalaa.com
Continuity of Some Standard Functions - Trigonometric Function
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If xy = ex−y , then `dy/dx` = ______
A) `(1+x)/(1 + log x)`
B) `log x/(1 + log x)^2`
C) `(1 - log x)/(1 + log x)`
D) `(1-x)/(1 + log x)`
If f(x) is continuous over [- π, π], where f(x) is defined as
f(x) = `{(- 2 sin x "," - pi ≤ x ≤ (-pi)/2),(alpha sin x + beta"," - pi/2 < x < pi/2),(cos x "," pi/2 ≤ x ≤ pi):}` then α and β equals