Advertisements
Advertisements
प्रश्न
If log10 8 = 0.90; find the value of : log10 4
उत्तर
Given that log108 = 0.90
⇒ log102 x 2 x 2 = 0.90
⇒ log1023 = 0.90
⇒ 3log102 = 0.90
⇒ log102 = `0.90/3`
⇒ log102 = 0.30 ...(1)
log 4
= log10( 2 x 2 )
= log10( 22 )
= 2log102
= 2( 0.30 ) ...[ from(1) ]
= 0.60
APPEARS IN
संबंधित प्रश्न
Express the following in a form free from logarithm:
2 log x - log y = 1
Evaluate the following without using tables :
log 5 + log 8 - 2 log 2
Evaluate the following without using tables :
log108 + log1025 + 2 log103 - log1018
Evaluate the following without using tables :
log 4 + `1/3` log 125 - `1/5`log 32
Express log102 + 1 in the form of log10x .
Solve for x : log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Solve for x : `(log 81)/(log27 )` = x
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log `2 1/4`
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4