Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
उत्तर
We know that log 2 = 0.3010 and log 3 = 0.4771
log 25
= log`( 25/4 xx 4 )`
= log`( 100/4 )` ...`[ log_a mn = log_a m + log_a n ]`
= log 100 - log( 2 x 2 ) ...`[ log_a (m/n) = log_a m - log_a n ]`
= 2 - log(22) ...[ log 100 = 2 ]
= 2 - 2log2 ...`[ log_a m^n = nlog_a m ]`
= 2 - 2( 0.3010 ) ...[ ∵ log 2 = 0.3010 ]
= 1.398
APPEARS IN
संबंधित प्रश्न
Express in terms of log 2 and log 3 : log 36
Express in terms of log 2 and log 3 :
`"log"26/51 - "log"91/119`
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Evaluate the following without using tables :
log 4 + `1/3` log 125 - `1/5`log 32
Express log102 + 1 in the form of log10x .
Solve for x : `(log 81)/(log27 )` = x
Solve for x : ` ( log 128) / ( log 32 ) ` = x
Solve for x :
`log 225/log15` = log x
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b' : log 5.4
State, true or false :
log x x log y = log x + log y