Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
उत्तर
We know that log 2 = 0.3010 and log 3 = 0.4771.
log 15
= log`( 15/10 xx 10 )`
= log`( 15/10 )` + log 10
= log`( 3/2 )` + 1 ...[ ∵ log 10 = 1 ]
= log 3 - log 2 + 1 ...`[ ∵ log m - log n = log (m/n)]`
= 0.4771 - 0.3010 + 1
= 1.1761
APPEARS IN
संबंधित प्रश्न
If log (a + b) = log a + log b, find a in terms of b.
If log 27 = 1.431, find the value of : log 300
Simplify : log (a)3 - log a
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: log 36
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If log 27 = 1.431, find the value of the following: log300
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`