Advertisements
Advertisements
प्रश्न
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
उत्तर
x2 + y2 = 6xy
⇒ x2 + y2 - 2xy = 6xy - 2xy
⇒ (x - y)2 = 4xy
⇒ `((x - y)/2)^2` = xy
⇒ `((x - y)/2) = sqrt(xy)`
Considering log both sides, we get
`"log"((x - y)/2) = "log"(xy)^(1/2)`
⇒ `"log"((x - y)/2) = (1)/(2)"log"(xy)`
⇒ `"log"((x - y)/2) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
If log (a + 1) = log (4a - 3) - log 3; find a.
If log5 x = y, find 52y+ 3 in terms of x.
Given: log3 m = x and log3 n = y.
If 2 log3 A = 5x - 3y; find A in terms of m and n.
Express the following as a single logarithm:
log 144 - log 72 + log 150 - log 50
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
If log 4 = 0.6020, find the value of each of the following: log2.5
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`