Advertisements
Advertisements
Question
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Solution
x2 + y2 = 6xy
⇒ x2 + y2 - 2xy = 6xy - 2xy
⇒ (x - y)2 = 4xy
⇒ `((x - y)/2)^2` = xy
⇒ `((x - y)/2) = sqrt(xy)`
Considering log both sides, we get
`"log"((x - y)/2) = "log"(xy)^(1/2)`
⇒ `"log"((x - y)/2) = (1)/(2)"log"(xy)`
⇒ `"log"((x - y)/2) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
RELATED QUESTIONS
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
If log 27 = 1.431, find the value of : log 9
If log5 x = y, find 52y+ 3 in terms of x.
Simplify : log (a)3 ÷ log a
Express the following in terms of log 5 and/or log 2: log125
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`