English

If X2 + Y2 = 6xy, Prove that Log ( X − Y 2 ) = 1 2 (Log X + Log Y) - Mathematics

Advertisements
Advertisements

Question

If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)

Sum

Solution

x2 + y2 = 6xy
⇒ x2 + y2 - 2xy = 6xy - 2xy
⇒ (x - y)2 = 4xy
⇒ `((x - y)/2)^2` = xy

⇒ `((x - y)/2) = sqrt(xy)`
Considering log both sides, we get
`"log"((x - y)/2) = "log"(xy)^(1/2)`

⇒ `"log"((x - y)/2) = (1)/(2)"log"(xy)`

⇒ `"log"((x - y)/2) = (1)/(2)["log" x + "log" y]`.

shaalaa.com
Expansion of Expressions with the Help of Laws of Logarithm
  Is there an error in this question or solution?
Chapter 10: Logarithms - Exercise 10.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 10 Logarithms
Exercise 10.2 | Q 25
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×