Advertisements
Advertisements
प्रश्न
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
उत्तर
x2 + y2 = 6xy
⇒ x2 + y2 - 2xy = 6xy - 2xy
⇒ (x - y)2 = 4xy
⇒ `((x - y)/2)^2` = xy
⇒ `((x - y)/2) = sqrt(xy)`
Considering log both sides, we get
`"log"((x - y)/2) = "log"(xy)^(1/2)`
⇒ `"log"((x - y)/2) = (1)/(2)"log"(xy)`
⇒ `"log"((x - y)/2) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log (a + b) = log a + log b, find a in terms of b.
If log (a + 1) = log (4a - 3) - log 3; find a.
Express the following in terms of log 5 and/or log 2: log250
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
Simplify the following:
`2"log" 7 + 3 "log" 5 - "log"(49)/(8)`
If 2 log x + 1 = 40, find: x
If log 4 = 0.6020, find the value of each of the following: log2.5
Simplify: log b ÷ log b2