Advertisements
Advertisements
प्रश्न
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
उत्तर
x2 + y2 = 7xy
⇒ x2 + y2 - 2xy = 7xy - 2xy
⇒ (x + y)2 = 9xy
⇒ `((x + y)/3)^2` = xy
⇒ `((x + y)/3) = sqrt(xy)`
Considering log both sides, we get
`"log"((x + y)/3) = "log"(xy)^(1/2)`
⇒ `"log"((x + y)/3) = (1)/(2)"log"(xy)`
⇒ `"log"((x + y)/3) = (1)/(2)["log" x + "log" y]`.
APPEARS IN
संबंधित प्रश्न
If log10 8 = 0.90; find the value of : log 0.125
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 5 and/or log 2: log160
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`