Advertisements
Advertisements
प्रश्न
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
उत्तर
`"log"root(5)(216)`
= `"log"(216)^(1/5)`
= `(1)/(5)"log"216`
= `(1)/(5)"log"(2^3 xx 3^3)`
= `(1)/(5)"log"2^3 + (1)/(5)"log"3^3`
= `(3)/(5)"log"2 + (3)/(5)"log"3`.
APPEARS IN
संबंधित प्रश्न
If log10 8 = 0.90; find the value of : log 0.125
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Express the following in terms of log 5 and/or log 2: log80
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log 8 = 0.90, find the value of each of the following: log4
Simplify: log a2 + log a-1