Advertisements
Advertisements
प्रश्न
If log 8 = 0.90, find the value of each of the following: log4
उत्तर
log 4
log 8
= log23
= 3 log 2
= 0.90
⇒ log 2
= 0.90 / 3
= 0.3
∴ log 4
= log22
= 2 log 2
= 2 x 0.30
= 0.60.
APPEARS IN
संबंधित प्रश्न
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 75
If 2 log x + 1 = 40, find: log 5x
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`