Advertisements
Advertisements
प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
उत्तर
(i) Consider the given equation :
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250 [ logamn = nlogam]
⇒ log10x2 + log1010 = log10250 [ ∵ log1010 = 1]
⇒ log10( x2 x 10 ) = log10250 [ logam + logan = logamn ]
⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x = `sqrt25`
⇒ x = 5
(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1 [ ∵ log1010 = 1]
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
If log 27 = 1.431, find the value of : log 9
If log 27 = 1.431, find the value of : log 300
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 2.25
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
Simplify: log b ÷ log b2