Advertisements
Advertisements
Question
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Solution
(i) Consider the given equation :
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250 [ logamn = nlogam]
⇒ log10x2 + log1010 = log10250 [ ∵ log1010 = 1]
⇒ log10( x2 x 10 ) = log10250 [ logam + logan = logamn ]
⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x = `sqrt25`
⇒ x = 5
(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1 [ ∵ log1010 = 1]
APPEARS IN
RELATED QUESTIONS
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
If log (a + 1) = log (4a - 3) - log 3; find a.
If log5 x = y, find 52y+ 3 in terms of x.
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Simplify the following:
`2"log" 7 + 3 "log" 5 - "log"(49)/(8)`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)