हिंदी

Given 2 Log10 X + 1 = Log10 250, Find : (I) X (Ii) Log10 2x - Mathematics

Advertisements
Advertisements

प्रश्न

Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x

योग

उत्तर

(i) Consider the given equation : 
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250     [ logamn = nlogam]

⇒ log10x2 + log1010 = log10250  [ ∵ log1010 = 1]

⇒ log10( x2 x 10 ) = log10250       [ logam + logan = logamn ]

⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x = `sqrt25`
⇒ x = 5

(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1                               [ ∵ log1010 = 1]

shaalaa.com
Expansion of Expressions with the Help of Laws of Logarithm
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Logarithms - Exercise 8 (B) [पृष्ठ १०७]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 8 Logarithms
Exercise 8 (B) | Q 13 | पृष्ठ १०७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×