Advertisements
Advertisements
प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
उत्तर
(i) Consider the given equation :
2log10x + 1 = log10250
⇒ log10x2 + 1 = log10250 [ logamn = nlogam]
⇒ log10x2 + log1010 = log10250 [ ∵ log1010 = 1]
⇒ log10( x2 x 10 ) = log10250 [ logam + logan = logamn ]
⇒ x2 x 10 = 250
⇒ x2 = 25
⇒ x = `sqrt25`
⇒ x = 5
(ii) x = 5 ( proved above in (i))
log102x = log102(5)
= log1010
= 1 [ ∵ log1010 = 1]
APPEARS IN
संबंधित प्रश्न
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If 2 log x + 1 = 40, find: x
If log 4 = 0.6020, find the value of each of the following: log2.5
If log 8 = 0.90, find the value of each of the following: log4