Advertisements
Advertisements
प्रश्न
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
उत्तर
Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n
Consider the given expression :
32x - 3
= 32x . 3-3
=` 3^(2x) . 1/3^3`
= `3^(2x)/3^3`
= `(3^x)^2/3^3`
= `m^2/27`
Therefore, 32x - 3 = `m^2/27`
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
If log 27 = 1.431, find the value of : log 9
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Express the following in terms of log 2 and log 3: log128
Express the following in terms of log 5 and/or log 2: log80
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 720
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`