Advertisements
Advertisements
Question
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Solution
Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n
Consider the given expression :
32x - 3
= 32x . 3-3
=` 3^(2x) . 1/3^3`
= `3^(2x)/3^3`
= `(3^x)^2/3^3`
= `m^2/27`
Therefore, 32x - 3 = `m^2/27`
APPEARS IN
RELATED QUESTIONS
If 2 log y - log x - 3 = 0, express x in terms of y.
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 5 and/or log 2: log80
Express the following in terms of log 5 and/or log 2: log500
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
If 2 log x + 1 = 40, find: log 5x
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If log 8 = 0.90, find the value of each of the following: log4
If log 27 = 1.431, find the value of the following: log 9