Advertisements
Advertisements
Question
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Solution
`"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
= `"log"(225)/(16) - 2"log"(5)/(9) + 5"log"(2)/(3)`
= log225 - log16 - 2[log5 - log9] + 5[log2 - log3]
= log(52 x 32) - log24 - 2[log5 - log32] + 5[log2 - log3]
= log52 + log32 - 4log2 - 2[log 5 - 2log3] + 5[log2 - log3]
= 2log5 + 2log3 - 4log2 - 2log5 + 4log3 + 5log2 - 5log3
= log2 + log3.
APPEARS IN
RELATED QUESTIONS
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
If log10 8 = 0.90; find the value of : log√32
Express the following in terms of log 2 and log 3: log 54
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
If log 8 = 0.90, find the value of each of the following: log4
Simplify: log b ÷ log b2
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`