Advertisements
Advertisements
प्रश्न
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
उत्तर
`"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
= `"log"(225)/(16) - 2"log"(5)/(9) + 5"log"(2)/(3)`
= log225 - log16 - 2[log5 - log9] + 5[log2 - log3]
= log(52 x 32) - log24 - 2[log5 - log32] + 5[log2 - log3]
= log52 + log32 - 4log2 - 2[log 5 - 2log3] + 5[log2 - log3]
= 2log5 + 2log3 - 4log2 - 2log5 + 4log3 + 5log2 - 5log3
= log2 + log3.
APPEARS IN
संबंधित प्रश्न
If log10 8 = 0.90; find the value of : log√32
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 5 and/or log 2: log125
Express the following in terms of log 5 and/or log 2: log250
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45