Advertisements
Advertisements
प्रश्न
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
उत्तर
F = `"G"("m"_1"m"_2)/"d"^2`
Considering log on both the sides, we get
logF = `"log"("G"("m"_1"m"_2)/"d"^2)`
= log (Gm1m2) - log d2
= logG + logm1 + logm2 - 2 log d.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If 2 log x + 1 = 40, find: log 5x
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18