Advertisements
Advertisements
प्रश्न
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
उत्तर
`"log" root(3)(144)`
= `"log"(144)^(1/3)`
= `(1)/(3)"log144`
= `(1)/(3)"log"(2^4 xx 3^2)`
= `(1)/(3)"log"2^4 + (1)/(3)"log"3^2`
= `(4)/(3)"log"2 + (2)/(3)"log"3`.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
If log5 x = y, find 52y+ 3 in terms of x.
Simplify : log (a)3 - log a
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Express the following as a single logarithm:
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
Find the value of:
`("log"sqrt(27) + "log"8 + "log"sqrt(1000))/("log"120)`