Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
उत्तर
log45
= log (32 x 5)
= log 32 + log 5
= 2 log 3 + log 5
= (2 x 0.4771) + 0.6990
= 1.6532.
APPEARS IN
संबंधित प्रश्न
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Simplify : log (a)3 - log a
Express the following in terms of log 2 and log 3: log 54
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
If log 4 = 0.6020, find the value of each of the following: log8
If log 27 = 1.431, find the value of the following: log 9