Advertisements
Advertisements
प्रश्न
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
उत्तर
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
= `12 "log" (3)/(2) + 7"log" (5^3)/(3^3) - 5 "log" (5^2)/(2^2 xx 3^2) - 7"log" 5^2 + "log" (2^4)/(3)`
= 12 log 3 − 12 log 2 + 7 log 53 − 7 log 33 − 5 log 52 + 5 log 22 + 5 log 32 − 7 log 52 + log 24 − log 3
= 12 log 3 − 12 log 2 + 21 log 5 − 21 log 3 − 10 log 5 + 10 log 2 + 10 log 3 − 14 log 5 + 4 log 2 − log 3
= 2 log 2 + 3 log 5
APPEARS IN
संबंधित प्रश्न
If log10 8 = 0.90; find the value of : log 0.125
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following in terms of log 2 and log 3: log 144
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If 2 log x + 1 = 40, find: log 5x
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)