Advertisements
Advertisements
Question
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
Solution
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
= `12 "log" (3)/(2) + 7"log" (5^3)/(3^3) - 5 "log" (5^2)/(2^2 xx 3^2) - 7"log" 5^2 + "log" (2^4)/(3)`
= 12 log 3 − 12 log 2 + 7 log 53 − 7 log 33 − 5 log 52 + 5 log 22 + 5 log 32 − 7 log 52 + log 24 − log 3
= 12 log 3 − 12 log 2 + 21 log 5 − 21 log 3 − 10 log 5 + 10 log 2 + 10 log 3 − 14 log 5 + 4 log 2 − log 3
= 2 log 2 + 3 log 5
APPEARS IN
RELATED QUESTIONS
Given 3log x + `1/2`log y = 2, express y in term of x.
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Express the following as a single logarithm:
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 75
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 2.25
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If log 27 = 1.431, find the value of the following: log300
Simplify: log b ÷ log b2