Advertisements
Advertisements
Question
Express the following as a single logarithm:
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
Solution
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
= `2 "log" (2^4)/(5^2) - 3 "log" (2^3)/(5) + "log" (2 xx 5 xx 3^2)`
= 2log 24 - 2 log 52 - 3{log 23 - log 5} + log 2 + log 5 + log 32
= 2 x 4 log 2 - 2 x 2 log 5 - 3 x 3 log 2 + 3 log 5 + log 2 log 5 + 2 log 3
= 8 log 2 - 4 log 5 - 9 log 2 + 3 log 5 + log 2 + log 5 + 2 log 3
= 2 log 3
= log 32
= log 9.
APPEARS IN
RELATED QUESTIONS
If log 27 = 1.431, find the value of : log 9
If log10 a = b, find 103b - 2 in terms of a.
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following as a single logarithm:
`2"log"(15)/(18) - "log"(25)/(162) + "log"(4)/(9)`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If 2 log y - log x - 3 = 0, express x in terms of y.
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)