Advertisements
Advertisements
प्रश्न
Express the following as a single logarithm:
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
उत्तर
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
= `2 "log" (2^4)/(5^2) - 3 "log" (2^3)/(5) + "log" (2 xx 5 xx 3^2)`
= 2log 24 - 2 log 52 - 3{log 23 - log 5} + log 2 + log 5 + log 32
= 2 x 4 log 2 - 2 x 2 log 5 - 3 x 3 log 2 + 3 log 5 + log 2 log 5 + 2 log 3
= 8 log 2 - 4 log 5 - 9 log 2 + 3 log 5 + log 2 + log 5 + 2 log 3
= 2 log 3
= log 32
= log 9.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Express the following in terms of log 2 and log 3: log128
Express the following in terms of log 5 and/or log 2: log20
Express the following in terms of log 5 and/or log 2: log160
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
Simplify: log a2 + log a-1