Advertisements
Advertisements
प्रश्न
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
उत्तर
V = `(1)/("D"l) sqrt("T"/(pi"r")`
⇒ V = `(1)/("D"l)("T"/(pi"r"))^(1/2)`
Considering log on both the sides, we get
log V = `"log"[(1)/("D"l)("T"/(pi"r"))^(1/2)]`
= `"log"(1/("D"l)) + "log"("T"/(pi"r"))^(1/2)`
= `("log"1 - "log""D" - "log"l) + (1)/(2)"log"("T"/(pi"r"))`
= `(0 - "log""D" - "log"l) + (1)/(2)("log""T" - "log"pi - "log""r")`
= `(1)/(2)("log""T" - "log"pi - "log""r") - "log""D" - "log"l`.
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
If log 8 = 0.90, find the value of each of the following: log4
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`