Advertisements
Advertisements
प्रश्न
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: `"log"2(1)/(4)`
उत्तर
log16 = a, log9 = b and log5 = c
log 42 = a, log32 = b and log5 = c
2log4 = a, 2log3 = b and log 5 = c
`"log"4 = "a"/(2), "log"3 = "b"/(2) and "log"5` = c
Consider, `"log"2(1)/(4) = "log"(9/4)`
= log9 - log4
= log32 - log4
= 2log3 - log4
= `2("b"/2) - "a"/(2)`
= `(2"b" - "a")/(2)`.
APPEARS IN
संबंधित प्रश्न
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: log 216
Express the following in terms of log 5 and/or log 2: log160
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Express the following as a single logarithm:
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
Simplify the following:
`2 "log" 5 +"log" 8 - (1)/(2) "log" 4`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
Simplify: log b ÷ log b2