Advertisements
Advertisements
प्रश्न
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
उत्तर
log x = p + q and log y = p - q
`"log"(10x)/y^2` = log 10x - log y2
⇒ `"log"(10x)/y^2` = log10 + logx - 2logy
⇒ `"log"(10x)/y^2` = 1 + p + q - 2(p - q)
⇒ `"log"(10x)/y^2` = 1 - p + 3q.
APPEARS IN
संबंधित प्रश्न
If log10 8 = 0.90; find the value of : log√32
If log (a + 1) = log (4a - 3) - log 3; find a.
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: log 216
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If 2 log x + 1 = 40, find: x
If log 27 = 1.431, find the value of the following: log300
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`