Advertisements
Advertisements
प्रश्न
If log10 8 = 0.90; find the value of : log√32
उत्तर
Given that log108 = 0.90
⇒ log102 x 2 x 2 = 0.90
⇒ log1023 = 0.90
⇒ 3log102 = 0.90
⇒ log102 = `0.90/3`
⇒ log102 = 0.30 ...(1)
log √32
=`log_10(32)^(1/2)`
= `1/2 log_10(32)`
= `1/2 log_10( 2 xx 2 xx 2 xx 2 xx 2 )`
= `1/2 log_10(2^5)`
= `1/2 xx 5log_10 2`
= `1/2 xx 5( 0.30 )` [ from(1) ]
= 5 x 0.15
= 0.75
APPEARS IN
संबंधित प्रश्न
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Express the following in terms of log 2 and log 3: log 54
Express the following in terms of log 2 and log 3: log 144
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 75
If log a = p and log b = q, express `"a"^3/"b"^2` in terms of p and q.
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`