Advertisements
Advertisements
प्रश्न
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
उत्तर
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
= `("log"(125)^(1/2) - "log"(27)^(1/2) - "log"(8)^(1/2))/("log"6 - "log"5)`
= `("log"(5)^(3xx1/2) - "log"(3)^(3xx1/2) - "log"(2)^(3xx1/2))/("log"6 - "log"5)`
= `(3/2 "log"(5) - 3/2"log"(3) - 3/2"log"(2))/("log"(2 xx 3) - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/("log"2 + "log"3 - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/(-["log"5 - "log"3 - "log"2])`
= `-(3)/(2)`.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
If log 27 = 1.431, find the value of : log 300
Express the following in terms of log 2 and log 3: log 648
Express the following in terms of log 5 and/or log 2: log160
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
Simplify: log a2 + log a-1