Advertisements
Advertisements
Question
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
Solution
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`
= `("log"(125)^(1/2) - "log"(27)^(1/2) - "log"(8)^(1/2))/("log"6 - "log"5)`
= `("log"(5)^(3xx1/2) - "log"(3)^(3xx1/2) - "log"(2)^(3xx1/2))/("log"6 - "log"5)`
= `(3/2 "log"(5) - 3/2"log"(3) - 3/2"log"(2))/("log"(2 xx 3) - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/("log"2 + "log"3 - "log"5)`
= `(3/2["log"(5) - "log"(3) - "log"(2)])/(-["log"5 - "log"3 - "log"2])`
= `-(3)/(2)`.
APPEARS IN
RELATED QUESTIONS
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
If log10 8 = 0.90; find the value of : log√32
Given `log_x 25 - log_x 5 = 2 - log_x (1/125)` ; find x.
Express the following in terms of log 2 and log 3: log 36
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 720
If log 4 = 0.6020, find the value of each of the following: log2.5
If log 27 = 1.431, find the value of the following: log300