Advertisements
Advertisements
Question
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
Solution
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
= `3"log" (2^5)/(3^3) + 5"log"(5^3)/(2^3 xx 3) - 3"log"(5^4)/(2 xx 3^4) + "log"(2)/(3 xx 5^2)`
= 3 log 25 − 3 log 33 + 5 log 53 − 5 log 23 − 5 log 3 − 3 log 54 + 3 log 2 + 3 log 34 + log 2 − log 3 - log 52
= 3 x 5 log 2 − 3 x 3 log 3 + 5 x 3 log 5 − 5 x 3 log 2 − 5 log 3 − 3 x 4 log 5 + 3 log 2 + 3 x 4 log 3 + log 2 − log 3 − 2 log 5
= 15 log 2 − 9 log 3 + 15 log 5 − 15 log 2 − 5 log 3 − 12 log 5 + 3 log 2 + 12 log 3 + log 2 − log 3 − 2 log 5
= log 5 + log 2
= log (5 x 2)
= log 10
= 1.
APPEARS IN
RELATED QUESTIONS
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Express the following in terms of log 5 and/or log 2: log125
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If log 2 = x and log 3 = y, find the value of each of the following on terms of x and y: log60
If log 27 = 1.431, find the value of the following: log 9
Simplify: log b ÷ log b2
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`