Advertisements
Advertisements
प्रश्न
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
उत्तर
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
= `3"log" (2^5)/(3^3) + 5"log"(5^3)/(2^3 xx 3) - 3"log"(5^4)/(2 xx 3^4) + "log"(2)/(3 xx 5^2)`
= 3 log 25 − 3 log 33 + 5 log 53 − 5 log 23 − 5 log 3 − 3 log 54 + 3 log 2 + 3 log 34 + log 2 − log 3 - log 52
= 3 x 5 log 2 − 3 x 3 log 3 + 5 x 3 log 5 − 5 x 3 log 2 − 5 log 3 − 3 x 4 log 5 + 3 log 2 + 3 x 4 log 3 + log 2 − log 3 − 2 log 5
= 15 log 2 − 9 log 3 + 15 log 5 − 15 log 2 − 5 log 3 − 12 log 5 + 3 log 2 + 12 log 3 + log 2 − log 3 − 2 log 5
= log 5 + log 2
= log (5 x 2)
= log 10
= 1.
APPEARS IN
संबंधित प्रश्न
If log (a + 1) = log (4a - 3) - log 3; find a.
Prove that:
log10 125 = 3(1 - log102).
Express the following in terms of log 2 and log 3: log 144
Express the following in terms of log 5 and/or log 2: log80
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 720
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)