Advertisements
Advertisements
प्रश्न
If log (a + 1) = log (4a - 3) - log 3; find a.
उत्तर
Given that
log (a + 1) = log (4a - 3) - log 3
⇒ log (a + 1) = log `( ( 4a - 3)/ ( 3 ) )`
⇒ a + 1 = ` ( 4a - 3 ) / ( 3 ) `
⇒ 3a + 3 = 4a - 3
⇒ 4a - 3a = 3 + 3
⇒ a = 6
APPEARS IN
संबंधित प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 2.25
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log18
If log 4 = 0.6020, find the value of each of the following: log2.5
If log 27 = 1.431, find the value of the following: log 9
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
Simplify: log a2 + log a-1