Advertisements
Advertisements
प्रश्न
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
उत्तर
Given that
a log b + b log a - 1 = 0
⇒ a log b + b log a = 1
⇒ log ba + logab =1
⇒ log ba + log ab = log 10
⇒ log ( ba . ab ) = log 10
⇒ ba . ab = 10
APPEARS IN
संबंधित प्रश्न
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Simplify : log (a)3 - log a
Express the following in terms of log 5 and/or log 2: log125
Express the following in terms of log 5 and/or log 2: log500
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`