Advertisements
Advertisements
प्रश्न
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
उत्तर
Given that
a log b + b log a - 1 = 0
⇒ a log b + b log a = 1
⇒ log ba + logab =1
⇒ log ba + log ab = log 10
⇒ log ( ba . ab ) = log 10
⇒ ba . ab = 10
APPEARS IN
संबंधित प्रश्न
If x = (100)a , y = (10000)b and z = (10)c , find log`(10sqrty)/( x^2z^3)` in terms of a, b and c.
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log10 8 = 0.90; find the value of : log 0.125
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If log x = p + q and log y = p - q, find the value of log `(10x)/y^2` in terms of p and q.
If log a = p and log b = q, express `"a"^3/"b"^2` in terms of p and q.