Advertisements
Advertisements
प्रश्न
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
उत्तर
V = `(4)/(3)pi"r"^3`
Considering log on both the sides, we get
log V = `"log"(4/3 pi"r"^3)`
= log4 + logπ + logr3 - log3
= log22 + logπ + 3logr - log3
= 2log2 - log3 + logπ + 3logr.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 12
If log 27 = 1.431, find the value of : log 300
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
If log 8 = 0.90, find the value of each of the following: `"log"sqrt(32)`
If x2 + y2 = 6xy, prove that `"log"((x - y)/2) = (1)/(2)` (log x + log y)
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)
Simplify: log b ÷ log b2
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`