Advertisements
Advertisements
प्रश्न
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
उत्तर
`"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
= `"log"(225)/(16) - 2"log"(5)/(9) + 5"log"(2)/(3)`
= log225 - log16 - 2[log5 - log9] + 5[log2 - log3]
= log(52 x 32) - log24 - 2[log5 - log32] + 5[log2 - log3]
= log52 + log32 - 4log2 - 2[log 5 - 2log3] + 5[log2 - log3]
= 2log5 + 2log3 - 4log2 - 2log5 + 4log3 + 5log2 - 5log3
= log2 + log3.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
If log (a + b) = log a + log b, find a in terms of b.
If log10 8 = 0.90; find the value of : log 0.125
Prove that : If a log b + b log a - 1 = 0, then ba. ab = 10
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`2 + 1/2 "log" 9 - 2 "log" 5`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 2.25
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
If log 27 = 1.431, find the value of the following: log 9
Simplify: log b ÷ log b2