Advertisements
Advertisements
प्रश्न
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log105
उत्तर
log1025 = x
⇒ log1052 =x
⇒ 2log105 = x
⇒ log105 = `x/(2)`.
APPEARS IN
संबंधित प्रश्न
If 3( log 5 - log 3 ) - ( log 5 - 2 log 6 ) = 2 - log x, find x.
If log 27 = 1.431, find the value of : log 300
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Simplify : log (a)3 ÷ log a
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Express the following as a single logarithm:
`2"log"(9)/(5) - 3"log"(3)/(5) + "log"(16)/(20)`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
Simplify: log a2 + log a-1