Advertisements
Advertisements
प्रश्न
Express the following as a single logarithm:
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
उत्तर
`3"log"(5)/(8) + 2"log"(8)/(15) - (1)/(2)"log"(25)/(81) + 3`
= `3"log"(5)/(2^3) + 2"log"(2^3)/(3 xx 5) - (1)/(2)"log"(5^2)/(3^4) + 3"log"10`
= `3"log"5 - 3"log"2^3 + 2"log"2^3 - 2"log"3 - 2"log"5 - (1)/(2)"log"5^2 + (1)/(2)"log"3^4 + 3"log(2 xx 5)`
= `3"log"5 - 3 xx 3"log"2 + 2 xx 3"log"2 - 2"log"3 - 2"log"5 - (1)/(2) xx 2"log"5 + (1)/(2) xx 4"log"3 + 3"log"2 + 3"log5`
= 3log5 - 9log2 + 6log2 - 2log3 - 2log5 - log5 + 2log3 + 3log2 + 3log5
= 3log5
= log53
= log125.
APPEARS IN
संबंधित प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log (a + b) = log a + log b, find a in terms of b.
If 2 log y - log x - 3 = 0, express x in terms of y.
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 2 and log 3: `"log" root(3)(144)`
Express the following in terms of log 2 and log 3: `"log" root(4)(648)`
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
If log 8 = 0.90, find the value of each of the following: log4