Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log540
उत्तर
log540
= log (22 x 33 x 5)
= log 22 + log 33 + log 5
= 2 log 2 + 3 log 3 + log 5
= (2 x 0.3010) + (3 x 0.4771) + 0.6990
= 2.7323.
APPEARS IN
संबंधित प्रश्न
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
Given: log3 m = x and log3 n = y.
Express 32x - 3 in terms of m.
Given: log3 m = x and log3 n = y.
Write down `3^(1 - 2y + 3x)` in terms of m and n.
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Express the following as a single logarithm:
log 18 + log 25 - log 30
Express the following as a single logarithm:
`2"log" (16)/(25) - 3 "log" (8)/(5) + "log" 90`
Simplify the following:
`12"log" (3)/(2) + 7 "log" (125)/(27) - 5 "log" (25)/(36) - 7 "log" 25 + "log" (16)/(3)`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = x and log 3 = y, find the value of each of the following on terms of x and y: log1.2