Advertisements
Advertisements
प्रश्न
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
उत्तर
`"log" sqrt(72)`
= `"log"(72)^(1/2)`
= `(1)/(2)"log"72`
= `(1)/(2)"log"(2^3 xx 3^2)`
= `(1)/(2)"log"2^3 + (1)/(2)"log"3^2`
= `(3)/(2)"log"2 + (2)/(2)"log"3`
= `(3)/(2)"log"2 + "log"3`
= `(3/2 xx 0.3010) + 0.4771`
= 0.9286.
APPEARS IN
संबंधित प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log10 a = b, find 103b - 2 in terms of a.
Express the following in terms of log 2 and log 3: `"log"root(5)(216)`
Write the logarithmic equation for:
F = `"G"("m"_1"m"_2)/"d"^2`
Express the following as a single logarithm:
log 144 - log 72 + log 150 - log 50
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
If log x = A + B and log y = A-B, express the value of `"log" x^2/(10y)` in terms of A and B.
If log 8 = 0.90, find the value of each of the following: log4
If log 27 = 1.431, find the value of the following: log 9
If x2 + y2 = 7xy, prove that `"log"((x - y)/3) = (1)/(2)` (log x + log y)