Advertisements
Advertisements
प्रश्न
Simplify the following:
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
उत्तर
`3"log" (32)/(27) + 5 "log"(125)/(24) - 3"log" (625)/(243) + "log" (2)/(75)`
= `3"log" (2^5)/(3^3) + 5"log"(5^3)/(2^3 xx 3) - 3"log"(5^4)/(2 xx 3^4) + "log"(2)/(3 xx 5^2)`
= 3 log 25 − 3 log 33 + 5 log 53 − 5 log 23 − 5 log 3 − 3 log 54 + 3 log 2 + 3 log 34 + log 2 − log 3 - log 52
= 3 x 5 log 2 − 3 x 3 log 3 + 5 x 3 log 5 − 5 x 3 log 2 − 5 log 3 − 3 x 4 log 5 + 3 log 2 + 3 x 4 log 3 + log 2 − log 3 − 2 log 5
= 15 log 2 − 9 log 3 + 15 log 5 − 15 log 2 − 5 log 3 − 12 log 5 + 3 log 2 + 12 log 3 + log 2 − log 3 − 2 log 5
= log 5 + log 2
= log (5 x 2)
= log 10
= 1.
APPEARS IN
संबंधित प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 2.25
If log 2 = 0.3010 and log 3 = 0.4771 ; find the value of : log 1.2
Express the following in terms of log 5 and/or log 2: log20
Write the logarithmic equation for:
n = `sqrt(("M"."g")/("m".l)`
Write the logarithmic equation for:
V = `(4)/(3)pi"r"^3`
Express the following as a single logarithm:
`"log"(81)/(8) - 2"log"(3)/(5) + 3"log"(2)/(5) + "log"(25)/(9)`
If log1025 = x and log1027 = y; evaluate without using logarithmic tables, in terms of x and y: log103
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: log45
If log 8 = 0.90, find the value of each of the following: log4
If log 27 = 1.431, find the value of the following: log300